
Page 1 of 29  

  

  

Commercial Product Assurance 
for Smart Metering Equipment  

  

Updates to the v1.2 GSME and ESME 
Security Characteristics  

  

  

Approved by the SEC Security Sub-Committee 

(SSC)  

  

Version 0.9 – to be incorporated into Version 1.3 of the ESME and 

GSME Security Characteristics on 26th September 2019 

  
 

CONTENTS  
Contents ................................................................................................................................................................. 1 

Overview ................................................................................................................................................................ 2 

Proposed Changes to SC Wording .......................................................................................................................... 4 

DEV.M926: Protected software environment (CHANGE) .................................................................................. 4 

DEV.M946: Clock synchronisation (CHANGE) .................................................................................................... 6 

DEV.2.M847: Minimise interfaces (CHANGE) .................................................................................................... 7 

DEV.4.M138: State the Security Strength required for random numbers (CHANGE) ........................................ 8 

DEV.4.M140: Smooth output of Entropy Source with approved PRNG (CHANGE) ........................................... 9 

DEV.4.M141: Reseed PRNG as required (CHANGE) ......................................................................................... 10 

DEV.4.M290: Employ an approved Entropy Source (CHANGE) ....................................................................... 11 

DEV.4.M853: Prevent unauthorised changes to future-dated actions (CHANGE) ........................................... 12 

DEV.4.M911: Self-test of RNG (CHANGE) ........................................................................................................ 13 

DEV.4.M951: Mutual authentication on the HAN (CHANGE) .......................................................................... 14 

DEV.7.M894: Limit rate of UTRN validation attempts (CHANGE) .................................................................... 15 

VER.M846: Secure failure recovery (CHANGE) ................................................................................................ 16 

VER.M946: Clock synchronisation (CHANGE) .................................................................................................. 17 

VER.1.M347: Verify update mechanism (CHANGE) ......................................................................................... 18 

VER.2.M80: Protocol robustness testing (CHANGE) ........................................................................................ 21 

VER.4.M4: Evaluation/Cryptocheck (CHANGE) ................................................................................................ 23 

VER.4.M855: Receiver replay check (CHANGE) ............................................................................................... 24 

VER.4.M939: Enable update of security credentials (CHANGE) ....................................................................... 25 

VER.6.M917: Verify logical protection of keys (CHANGE) ................................................................................ 27 



Page 2 of 29  

  

VER.7.Mnnn: Confirm correct UTRN processing (**NEW**) ........................................................................... 28 

VER.7.M4: Evaluation/Cryptocheck (**DELETE**) .......................................................................................... 29 

DEP.5.M934: Unique security data per device (CHANGE) ............................................................................... 29 

 

  

  

OVERVIEW  
The SC updates were initiated as lessons learned from observations by the CPA Authority in operating the CPA 

Scheme in practice and have been consulted on with BEIS, SSC and industry. The general themes include:  

  

1. Clarifications to SC wording where it is potentially open to interpretation. Updated wording reflects 

interpretations ultimately followed in CPA evaluations.  

2. Some areas of product security functionality exist that could benefit from being covered by more 

meaningful assurance activities during a CPA evaluation.  

3. Alignment with wording changes already applied to the updated Comms Hub Security Characteristic 

(as part of the v1.2 to v1.3 change).  

  

The following sections describe the changes approved by the SSC for the current set of detailed requirements 

in the GSME and ESME Security Characteristics (nearly all requirements are identical in these two SCs), along 

with the associated rationale in each instance.  

 

The tracked changes and highlighting explains the development and subsequent amendment in response to 

industry comments. 

   

     



Page 3 of 29  

  

[Page intentionally blank]   



Page 4 of 29  

  

DEV.M926: Protected software environment (CHANGE)  

APPROVED CHANGES TO SC WORDING  
DEV.M926: Protected software environment (CHANGE)  

Change summary:  
Improve clarity of SC wording and remove potential ambiguities, based on observations arising from CPA 

evaluations.  

Rationale for changes:  
In this instance, the wording updates target the following areas in this SC requirement:  

• Freshen MISRA-related wording  

• Stack protection expectations in product  

• Assessment of third-party libraries, especially where that software is helping the product to meet one 

or more SC requirements.  

Specific changes:  
SC wording change: (modified/new wording change-marked)  

DEV.M926: Protected software environment   
This mitigation is required to counter exploitation of a software implementation/logic error   

At Foundation Grade the product is required to implement software protection 

measures as part of the design process.   
The device design information shall describe the process environment in the device in order 
to allow the evaluator to identify any defensive or robustness mechanisms provided by the 
platform or OS.  
  

The developer shall provide evidence to demonstrate device firmware compliance with 

MISRA 2012 rules for C (or equivalent for the target language), by application of an 
appropriately configured static analysis tool. Where the target language is C, MISRA 2012 or 
later must be used (and, where supported by the static analysis tool, include the additional 
rules introduced in MISRA:C 2012 Amendment 1). Where the target language is not C, the 
developer shall demonstrate equivalence by mapping each rule onto the equivalent criterion 
for the target language, accompanied by the method of demonstrating that the criterion has 

been met.  
  

The developer shall provide a rationale for how the device firmware protects against stack 

and heap corruption. Stack protection is typically expected to be provided via a compiler 
option that uses canaries to protect against a function’s return address being overwritten. 
Where Whether or not such a compiler option is not available, an alternative stack 
protection mechanism may be used. Either way, used the stack protection implementation 

needs to comply with the “Stack Protection Expectations” appendix in this document.  
  

The developer shall demonstrate that they review all device firmware against a checklist of 
security flaws, including known vulnerabilities, in other versions of the product or its 
components (e.g. where 3rd party software/hardware is used), and known vulnerabilities in 
similar devices. Note: Aspects of this requirement should be covered by the developer's 
ongoing Build Standard compliance obligations.  

  

Note: Device firmware in all contexts of this requirement includes any third-party libraries 

that are relied on by the product to meet one or more requirements in this Security 

Characteristic.  

  

  



Page 5 of 29  

  

The SC requirement wording changes regarding stack protection expectations will be accompanied by the 

introduction of a new appendix:  DEV.M926: Protected software environment (CHANGE)  

Appendix E – Stack Protection Expectations  

A sufficiently robust level of stack protection is expected that provides the following features as a minimum 
(which are typically on a par with those provided via a stack protection compiler option):  

• Detect corruption of a function return address before the function returns to that address. i.e. The 
corrupted return address will not be used, and appropriate remediation action will be performed 
instead, such as rebooting the product into a good known state.  

• Detect corruption of other variables in the stack frame, again before the function completes.  

• Be present in functions that have one or more arrays declared in the function’s stack frame (this 
includes third party library code within the same runtime environment as the application code).  

• If canaries are used to detect corruption, then:   

o The size of the canaries must be at least that of a memory pointer for the device’s platform (e.g. 

canary size would need to be at least 32 bits for a 32-bit architectural)  

o The values used for the canaries must vary across different devices in a non-predictable manner  

(not necessarily reliant on the same RNG function used to generate cryptographic key material).  

o Additionally, the canary value should also change in a specific device each time the product 

(re)boots, though this is not mandatory.  

Note: Although it would be desirable to detect overflow of one stack variable into another, this is not 

mandatory.  

Update 25/02/2019 (w.r.t. 08/10/2018 wording):  
• Slight relaxation of wording for MISRA 2012 amendment 1 – intention for the additional rules to be 

checked, where supported by standard industry static analysis tooling, but acceptance that the such 

static tooling may not yet cover all those rules.  

• Reworded stack protection requirement, which includes a relaxation of the sub-requirement to also 

protect against overflow of one local variable on the stack into another.  

• Last proposed paragraph of M926 has been questioned as having potentially significant impact on 

vendors. The new text relates to libraries that help the product meet other requirements in the SC, 

which are important from a security point of view and the default interpretation in CPA evaluations to 

date. This said, if vendors can indicate where the choice of third-party libraries (required to help the 

product meet SC requirements) might be problematic, this can be discussed.  

• Query that a requirement for MISRA compliance is disproportionate to the security risks – no 

rationale to substantiate this view has been provided and the MISRA compliance requirement was 

agreed with industry back in 2014.  

Update 28/02/2019:  
• MISRA compliance in third party libraries proving a stumbling point with a number of parties – it is 

therefore now proposed NOT to add any new wording here at this time and instead open a longer-

term action to develop appropriate new wording for future SC versions or future lab guidance 

documentation. NCSC view here remains that where the product is relying heavily on a third-party 

library to prevent product security from being materially compromised, the associated code should 

not have been hacked together. Hopefully, this is never the case, but getting some measure of MISRA 

compliance in such libraries acts as a useful smoke test. Having said this, industry concerns are 

acknowledged that choices for third-party libraries may be limited in some circumstances.  

• Slight tweaks made to stack protection expectation wording, including a clarification that the 

product’s main RNG does not necessarily need to be used for canary generation.  

• Suggestion that potential impact on product w.r.t. new MISRA 2012 Amendment 1 compliance 

requirement can be discussed in start-up meeting for new assurance work (AM, evaluation or re-

evaluation).  

Update 14/06/2019:  
• Amendment to wording that might have implied compiler stack protection is mandated option 

(updated wording is yellow-highlighted).  

  



Page 6 of 29  

  

DEV.M946: Clock synchronisation (CHANGE)  

DEV.M946: Clock synchronisation (CHANGE)  

Change summary:  
Adjust wording to be compliant with multiple versions of GBCS. 

Rationale for changes:  

The wording was originally written to be compliant with GBCS v1.0, but aspects of the wording are considered 

to be mismatched to the relevant Set Clock / Clock sync functionality described in versions of GBCS later than 

v1.0.  

Specific changes:  
SC wording change: (modified wording changed marked)  

DEV.M946: Clock synchronisation  
This mitigation is required to counter tampering with the device clock  

At Foundation Grade the product is required to prevent unauthorised modifications 

to the device clock.  
The device shall synchronise time with the Communications Hub as defined in [d, 9], on 
receipt of a valid Set Clock command and also periodically.  
  

On receipt of a valid Set Clock command, the time shall be retrieved from the  
Communications Hub. If the time retrieved is within the tolerance specified in the command, 
the device shall set its time to that retrieved from the Communications Hub. If it is outside 
the specified tolerance, the time status shall be marked as Unreliable, and an alert sent as 
defined in [d, 9] a response or alert (depending on the version of [d] GBCS being complied 
with) sent according to the specific requirements of [d, 9].  
  

Additionally, once every 24 hours (but no more frequently under normal operating 
conditions) a synchronisation is attempted. If the attempt to retrieve a valid time fails, the 
synchronisation will be subsequently attempted every 30 minutes until a valid time value 
has been retrieved according to the specific requirements of [d, 9]. If the result is that the 
time retrieved from the Communications Hub is not more than 10 seconds different from the 
device's current time, the device shall set its time to that retrieved from the  
Communications Hub and mark the time status as Reliable. If it is more than 10 seconds 
different from the device's current time, the time status shall be marked as Unreliable and a 
Security Log entry shall be recorded, and an alert sent as defined in [d, 9]. Note: Depending 
on the version of [d] being complied with, the Security Log entry and alert actions might only 

be needed if the time status has changed to be Unreliable.  
  

Design information shall identify any interface through which the device clock's time can be 

modified and how it is ensured that no unauthorised modifications can be made.  

  

Update 25/02/2019:  

•   

•   

  

Update 28/02/2019:  

•  

  

  

Amendment to wording to cover wording variations across different GBCS versions. 

Taken opportunity to include requirement to retry the clock resync if failure occurs. 

Attempts to resync every 30-minutes queried. Follow-up: Slight amendment so it’s clear that this is  

still to meet GBCS requirements.   



Page 7 of 29  

  

DEV.2.M847: Minimise interfaces (CHANGE)  

DEV.2.M847: Minimise interfaces (CHANGE)  

Change summary:  
Improve clarity of SC wording, based on observations arising from CPA evaluations.  

Rationale for changes:  
In this instance, the proposed wording updates target vendor and lab expectations relating to any non-GBCS 

interfaces that may be available in the product.  

Specific changes:  
SC wording change: (modified wording changed marked)  

DEV.2.M847: Minimise interfaces  
This mitigation is required to counter exploitation of a non-operational interface through 
crafted input  
This mitigation is required to counter exploitation of an operational interface through crafted 
input  

At Foundation Grade the product is required to ensure that only necessary 

protocols and services are available on the device.  
If there is any additional functionality provided in the device beyond that required to meet 
the functional requirements detailed in [b], [d] and [e], the developers must provide the 
evaluator with design documentation and a rationale to demonstrate that it doesn't impact 
the security requirements in this Security Characteristic.  
Where a device provides additional functionality, beyond that required to meet the functional 

requirements detailed in [b], [d] and [e], via additional protocols and services, the 
developers shall provide details of the functionality with an associated analysis that clearly 
indicate where security impacting functionality can occur. Where such additional functionality 
is present and has the potential to be security impacting, its unauthorised use shall be 

protected against using security mechanisms at least as strong as those in [d] that protect 
against unauthorised use of critical commands, using the same RBAC model. As a guide, 
“security impacting functionality” here is that functionality that would have the same 

material impact as a GBCS “critical command” (e.g. with the SME.C.C categorisation).  
  

At time of writing, there are discussions about meters generally being provided with 

additional functionality to that specified in [b], [d] and [e] to support triage and 

redeployment scenarios for meters. Such functionality, along with the specifications for any 

security protections required to protect against its unauthorised use, may be captured in 

additional documentation (to supplement [b], [d] and [e]) and be referenced in future 

versions of this Security Characteristic.  

  

Update 25/02/2019:  
• Removal of evaluator expectations (which are really VER activities).  

• Added a note to capture possible future updates to the SC in acknowledgement of current discussions 

around support for additional interface functionality to support triage and re-deployment activities.  

  

Update 28/02/2019:  

•  

  

  

Removed suggested placeholder text as should now be covered by the preceding text and the  

outcomes of the triage discussion.   



Page 8 of 29  

  

DEV.4.M138: State the Security Strength required for random numbers (CHANGE)  

DEV.4.M138: State the Security Strength required for random numbers (CHANGE) 

Change summary:  

Improve clarity of SC wording and alignment with associated Comms Hub Security Characteristic requirement.  

Rationale for changes:  
Self-explanatory.  

Specific changes:  
SC wording (and title) change: (modified wording change-marked)  

DEV.4.M1348: State raw entropy requirements the Security Strength required 

for random numbers  
This mitigation is required to counter prediction of randomly generated values due to a weak 
Entropy Source  

At Foundation Grade the product is required to have clearly defined entropy 

requirements for all operational random number generation employ an Entropy 

Source of sufficient Security Strength for all random number generation required in 

the operation of the product.  
Device design information shall specify all cryptographic keys employed by the device 
(including any that are not required for normal operation), and their method of generation 
or installation.  
  

The developer must state how much raw entropy is required from the product’s entropy 

source (for example, which is used to reseed the PRNG), the Security Strength required of 

their Entropy Source based on analysis of all security-related random numbers used in the 

device, including any generated keys. It shall be at least 128 bits as required by the elliptic 

curve-based asymmetric mechanisms using the P-256 curve, assuming no other security 

features of the device have significant entropy requirements require greater Security 

Strength.  

  

Update 25/02/2019:  

 •  Minor tweaks to highlight that entropy requirements relate to security aspects of the device.  

  

Update 28/02/2019:  

•  

  

   
  

Question asked about whether the RNG only applies to generation of cryptographic key material.   

Follow-up: The only other mention in the SC of security functionality having a random element is that 

associated with the canaries, and this has now been clarified as not necessarily needing a strong RNG. 



Page 9 of 29  

  

DEV.4.M140: Smooth output of Entropy Source with approved PRNG (CHANGE)  

DEV.4.M140: Smooth output of Entropy Source with approved PRNG (CHANGE)  

Change summary:  
Improve clarity of SC wording and alignment with associated Comms Hub Security Characteristic requirement. 

Additionally, add wording to ensure that power loss and power cycling scenarios gets covered in the RNG 

analysis.  

Rationale for changes:  
Alignment with associated Comms Hub Security Characteristic requirement self-explanatory. Power 

loss/cycling wording aspects proposed in line with current CPA evaluation policy.  

Specific changes:  
SC wording change: (modified wording change-marked)  

DEV.4.M140: Smooth output of Entropy Source with approved PRNG  
This mitigation is required to counter prediction of randomly generated values due to 
insufficient raw entropy reaching the PRNG a weak PRNG  

At Foundation Grade the product is required to ensure that all random data used 

originates from a PRNG that is seeded by one or more entropy sources. employ an 

RNG of sufficient Security Strength for all random number generation required in 

the operation of the product.  
The device design information shall include a description of how the output from all Entropy 
Sources and their associated PRNG can generate sufficient entropy for all keys and random 
numbers used in the product's regular operation including, where applicable, demonstrations 
of conformance to relevant standards such as the NIST SP800-90 series.  
  

Note: The PRNG implementation may be based on standards other than the NIST SP800-90 

series if it is believed they provide an equivalent level of security; if so, the rationale for this 
will need to have been agreed with the CPA Authority beforehand.  
  

Device design information shall also describe how the entropy in PRNG’s state will persist for 
any power-loss / device restart scenarios.  
  

For more details about which key pairs need to be generated by the product on RNG 
requirements, see the description of key pair generation in [d, 4].  

  

  

Update 25/02/2019:  
• No changes to suggested wording.  

• Query received about what other evidence might be permissible. Given the variation possible in 

product implementations, guidance on a case-by-case basis currently seems the best way forward, 

whilst retaining the option to publish more detailed supporting guidance in future.  

  



Page 10 of 29  

  

DEV.4.M141: Reseed PRNG as required (CHANGE)  

DEV.4.M141: Reseed PRNG as required (CHANGE)  

Change summary:  
Introduce a new *recommendation* to reseed periodically.  

Rationale for changes:  

This is in light of most CPA-certified devices having the capability to reseed an onboard PRNG (such as a 

NISTapproved DRBG), the usage of which would provide an additional mitigation against device’s RNG 

implementation failing during the product’s envisaged ~15+ year operational lifetime. The minimum figure of 

a month is suggested as this seems to be unlikely to significantly impact product functionality, though other 

alternative figures could be discussed.  

Specific changes:  
SC wording change: (modified wording change-marked, with further revisions yellow-highlighted)  

DEV.4.M141: Reseed PRNG as required  
This mitigation is required to counter prediction of randomly generated values due to a weak 
PRNG  

At Foundation Grade the product is required to follow an approved reseeding 

methodology.  
  

For instance, if a SP 800-90 series compliant DRBG is being used, the product must 
implement the reseed mechanism recommended by the relevant SP 800-90 series 
document.  

  

Reseeds of the PRNG should be performed at least once a month or immediately prior to 

generating a new random number (e.g. as part of generating a new key), provided, in the 

latter case, this does not significantly impact on the time taken to generate the random 

number.  

  

Update 25/02/2019:  
• Added example of an “approved” reseed mechanism.  

• Have also added alternative option for reseeding.  

• Note: period of 1 month has been questioned. However, nothing tangible has been offered in terms 

of what material impact such functionality would have on the product:  

o Performing such an operation once a month would appear to have pretty zero impact on a 

product that already has timers present and, in many cases will have the necessary reseed 

functionality present (e.g. as part of a CAVP validated solution), but unused in practice.  

o Even the sleepy, low-power GSME would seem to lose little of its available resources to 

performing this function once a month.  

o NCSC consider that meeting this recommendation would improve the product’s defensive 

stance.  

Update 16/04/2019:  
• Minor change to reflect that if the product is using a SP 800-90 series DRBG it must (not should) be 

using the appropriate reseed mechanism.  

  

  



Page 11 of 29  

  

DEV.4.M290: Employ an approved Entropy Source (CHANGE)  

DEV.4.M290: Employ an approved Entropy Source (CHANGE)  

Change summary:  
Improve clarity of SC wording, based on observations arising from CPA evaluations.  

Rationale for changes:  
Use of improvised noise sources were noted in one or more evaluations in which the level of analysis and 

associated assurance activities were unclear to the associated vendor and lab.  

Specific changes:  
SC wording change: (modified wording change-marked)  

DEV.4.M290: Employ an approved Entropy Source  
This mitigation is required to counter prediction of randomly generated values due to a weak 

Entropy Source  

At Foundation Grade the product is required to generate random bits using an 

Entropy Source whose entropy generation capability is understood.  
The developer must provide a detailed description of the Entropy Source used, giving 
evidence that it can generate sufficient entropy for each use of random numbers in the 
device, including an estimate of entropy per bit. The Entropy Source should be implemented 
according to guidance in relevant standards such as the NIST SP800-90 series.  
  

If a hardware noise source is used, then the manufacturer's name, the part numbers and 
details of how this source is integrated into the product must be supplied. If a software 
Entropy Source is employed, the API calls used must be provided. Where appropriate, 
details must be given of how the outputs of multiple Entropy Sources are combined.  
  

The device design information shall include an analysis of each noise source used for 
generating cryptographic keys, detailing the amount of entropy considered believed to be 
obtained from this source. This analysis should be supported by relevant datasheets, API 
specifications and results from the developer testing, as appropriate.  
  

Where devices or functions are used that are not dedicated noise sources (for instance,  A-D 
converters), analysis will additionally need to demonstrate that the improvised device or 

function will reliably provide a stated level of entropy for the operational environments the 
product may be deployed in. Factors that should be considered vary on the type of 
improvised noise source but could for instance involve (a) differences in temperature and 
humidity between the test lab and operational environment, (b) how predictable any input 
sampled by the improvised device might be in practice.  
  

Important: Entropy measurements are performed on the raw data sampled, i.e. before any 

subsequent processing of that data that could result in the data being scrambled in a 

manner that distorts the measured entropy.  

  

Update 25/02/2019:  
• Bit more of a steer given about what analysis might be appropriate for improvised devices.  

• Query about whether entropy levels from the output of a Von Neumann filtering stage can be stated 

– yes that option is possible, because no scrambling is involved (just discarding of bits).  

• Query that a third-party provider of a noise source solution might not share details, such as raw 

entropy per bit levels – this has not been a significant issue in most evaluations to date.  

• Query about what approved solutions already exist – unfortunately NCSC cannot recommend specific 

solutions.  

  



Page 12 of 29  

  

DEV.4.M853: Prevent unauthorised changes to future-dated actions (CHANGE)  

DEV.4.M853: Prevent unauthorised changes to future-dated actions (CHANGE)  

Change summary:  
Broaden scope of SC requirement with respect to checking future-dated actions. 

Rationale for changes:  

The current wording focusses on checking that a future dated action will still work correctly if the clock is 

changed, rather than considering more generally what guarantees that the future dated action takes place, 

this despite things *such as* changes to the clock.   

It is also considered important to make such a change as a future dated action may be necessary to complete 

the actioning of a critical command.  

Specific changes:  
SC wording change: (modified wording change-marked)  

DEV.4.M853: Protect Prevent unauthorised changes to future-dated actions  
This mitigation is required to counter future-dated actions not being carried out at the 
specified time  
This mitigation is required to counter unauthorised addition, modification or removal of a 
future action  

At Foundation Grade the product is required to carry out relevant future-dated 

actions at the time specified when the clock is updated.  
The device design information will describe why a future dated command can be guaranteed 
to will execute at the future time specified, according to [d, 9], regardless of other events 
that the device is expected to encounter that could conceivably impact when a future dated 
action may occur (such as the device rebooting or a clock change taking place).  
  

When the device clock is updated it shall neither miss nor repeat actions previously stored 
for future action nor miss calendar-based events.  

At Foundation Grade the product is required to ensure that only authentic 

messages can cause a future-dated command to be added.  
The device shall ensure that a future-dated message can only be added by receipt of a 
message from a source that is authorised to send that message type.  

At Foundation Grade the product is required to ensure that only authentic 

messages can cause a future-dated command to be deleted, replaced or modified.  
The device shall ensure that a future-dated message can only be modified, replaced or 

cancelled by receipt of another message of the same type from a source that is authorised 

to send that message type, or on change of control of the device.  

  

Update 25/02/2019:  
• Wording amended to capture more obvious events that might impact the firing of future dated 

events.  

  

Update 28/02/2019:  
• Questions asked about how exact the future-dated time needs to be, with a thought during the 

meeting that “at the time specified” could be removed. Follow-up: On reflection, running the 

command when it is required (or as close to afterwards, depending on what the device is doing at the 

time) is an integral part of the requirement, so have tweaked wording and linked it with [d] 

requirements.  

  

  



Page 13 of 29  

  

DEV.4.M911: Self-test of RNG (CHANGE)  

DEV.4.M911: Self-test of RNG (CHANGE)  

Change summary:  
Clarification that if a product implements its PRNG according to the NIST SP800-90 series, it will be required to 

perform self-checks on the PRNG output in accordance with those NIST requirements.  

Rationale for changes:  
There is a concern that the NIST requirements for these self-checks can be missed by developers implementing 

a NIST-approved DRBG from scratch.  

Specific changes:  
SC wording change: (modified wording change-marked)  

DEV.4.M911: Self-test of RNG   
This mitigation is required to counter prediction of randomly generated values due to a weak 
RNG  

At Foundation Grade the product is required to carry out self-testing of RNG 

output.  
The developer shall provide a description of the self-testing performed by the random 
number generator and why they consider believe the implemented tests are adequate. For 
clarity, the self-tests are expected to be applied to the output of the Entropy Source 
(checking the final RNG output shall be covered by Evaluation/Cryptocheck of the PRNG, 

under the VER requirements in this Security Characteristic).  
Note: Where a NIST SP800-90 series compliant PRNG is used by the product, the self-tests 

required by these standards are expected to be implemented.  

  

(Update 25/02/2019: No changes made to suggested updates [except for a minor  

wording change])   

  

  



Page 14 of 29  

  

DEV.4.M951: Mutual authentication on the HAN (CHANGE)  

DEV.4.M951: Mutual authentication on the HAN (CHANGE)  

Change summary:  
Change rigor of lab evidence from ‘DEV’ to ‘VER’ – when demonstrating that the product will authenticate 

another device on the HAN before exchanging any application data with it.  

Rationale for changes:  
This is in recognition that this security requirement provides an important protection against eavesdropping 

on the HAN by less trusted devices (e.g. HAN devices that are not CPA-certified).  

Specific changes:  
SC wording change: (modified wording change-marked)  

VERDEV.4.M951: Mutual authentication on the HAN  
This mitigation is required to counter connecting an unauthorised device to the HAN  
This mitigation is required to counter spoofing an existing HAN device  
This mitigation is required to counter aberrant behaviour of another HAN device  

At Foundation Grade the evaluator will confirm that the product product is 

required to authenticates a device on the HAN before securely exchanging 

information with it (other than that required to complete the joining).  
The evaluator shall confirm that:  
- the product will only successfully join to another HAN device according to the different 
scenarios permitted for the join to occur in [d, 13.7]  
- the product will not attempt to join to the other HAN device in other scenarios such as 
(a) the other device is of a type that the product is not permitted to communicate with, (b) 

the other device’s details are not in the product’s Device Log, (c) the other device’s details 
are mismatched with details in the product’s Device Log and (d) the other device’s key pair 
is mismatched with the security credentials held for that device in the product’s Device Log. 

- only once a successful join has occurred, will application data be exchanged between the 
product and the other HAN device, this data being encrypted using a symmetric key agreed 
by the two devices in accordance with [d, 13.7].  

At Foundation Grade the evaluator will confirm that removal of the other device’s 

entry from the product’s Device Log will result in the encrypted link between the 

product and other HAN device being terminated (i.e. it will no longer be possible for  

 application data to be exchanged between the two devices).  

  

Update 25/02/2019:  
• Add some suggested assurance activities for the evaluator  

• Query that such testing may already be happening elsewhere – if this is the case and the nature of the 

testing + results can be shared with the evaluators and the evaluators can be satisfied that the 

evidence demonstrates conformance with this SC requirement, additional lab testing may not be 

needed.  

• Query about changing DEV to VER rather than introducing a new VER as per other SC requirements – 

unclear in this instance what value gets added by retaining the DEV.  

  

  



Page 15 of 29  

  

DEV.7.M894: Limit rate of UTRN validation attempts (CHANGE)  

DEV.7.M894: Limit rate of UTRN validation attempts (CHANGE)  

Change summary:  
Change rigor of lab evidence from ‘DEV’ to ‘VER’ – when demonstrating that the product will rate limit 

attempts to process UTRNs.  

Rationale for changes:  
This is in recognition that rate limiting is an important security control protecting against unauthorised use of a 

critical command – critical from the viewpoint that a failure to rate-limit could result in non-authentic UTRNs 

being incorrectly accepted via some brute-force method.  

Specific changes:  
SC wording change: (modified wording change-marked)  

VERDEV.7.M894: Limit rate of UTRN validation attempts  
This mitigation is required to counter attempting to guess a valid UTRN  
This mitigation is required to counter blocking UTRN acceptance by causing repeated validation 
failures by manual entry  

At Foundation Grade the evaluator will confirm product is required to limit the 

rate limiting of unsuccessful UTRN validation attempts.  
The mechanism for limiting the rate of validation attempts shall not result in a period of non-

acceptance of longer than 60 minutes. UTRNs input by manual entry, either through the user 
interface or via a PPMID, during any period of non-acceptance shall be discarded without 
attempting to validate the UTRN.  
Note: Rate-limiting via the PPMID will should be independent to that via the user interface. 

For instance, a temporary block on UTRN entry via PPMID will does not in itself cause UTRN 

entry via the user interface to also be blocked.  

  

Update 25/02/2019:  
• Query relating to a suggestion that SMETS wording implies independent rate limiting checks on the 

User Interface and HAN interface, but not on the PPMID interface. However, this argument seems 

irrelevant given that rate-limiting on the PPMID interface already appears to be present in meters 

already evaluated under CPA.  

  

Update 28/02/2019:  
• Relaxed requirement for independent rate limiting for PPMID versus Manual entry to 

recommendation.  

  

  



Page 16 of 29  

  

VER.M846: Secure failure recovery (CHANGE) 

VER.M846: Secure failure recovery (CHANGE)  

Change summary:  
Alignment of requirement text with the equivalent in the Comms Hub Security Characteristic. 

Rationale for changes:  

Self-explanatory.  

Specific changes:  
SC wording change: (modified wording change-marked)  

VER.M846: Secure failure recovery  
This mitigation is required to counter disruption of a device by electromagnetic interference 
This mitigation is required to counter exploitation of a software implementation/logic error  

At Foundation Grade the evaluator will attempt to induce failures and observe 

correct recovery behaviour.  
The evaluator shall verify by testing that all of a representative sample of the recognised 
error conditions are correctly handled. This sample shall include error conditions that do not 
arise directly as a result of input failures (examples of such a test might be a failure of the 
power-up firmware integrity verification check or other self-test, or corruption of internal 
state values; test equipment such as an emulator may therefore be used to enable these 
tests). The sample shall also include tests of the device's ability to recover from a 
communications overload (i.e. messages arriving at a rate that exceeds the device's ability 

to process them), and of the device's ability to resist and/or recover from electromagnetic 
interference (such as electrostatic discharge).  
  

The evaluator shall provide a rationale that the sample is sufficiently representative, based 

on the design information relating to error handling.  
  

The evaluator shall also seek evidence (performing additional tests where necessary) that 
the risk of potentially exploitable bugs in product code (in particular code handling remote 
incoming messages) will be robustly mitigated against, for instance by one or more product 
features detecting anomalous code behaviour and responding with a controlled restart.  
  

The recovery action(s) shall be executed only using code that has passed the start-up 

integrity check for the current execution (since the last reset or power-on). Code that has 

failed the start  -up integrity check shall not be run.  

  

Update 25/02/2019:  
• Slight rewording of last paragraph to make more reader friendly.  

• Query about what mechanisms need to be tested – those in the corresponding DEV.  

Update 28/02/2019:  
• Question over what constitutes a pass relating to how potentially exploitable bugs are mitigated. 

Follow-up: This has not been an issue in evaluations to date, including those for Comms Hubs in which 

equivalent wording has been placed into the same Security Characteristic. This said, a lab guidance 

paper might be useful to provide clarity here.  

• Wording in last paragraph questioned regarding immutable. Follow-up: Such wording removed 

because, in practice, it is likely that any recovery actions will need to be performed by complex code, 

which will be updateable and hence integrity checked before being run. *PTO*  

  

Update 16/04/2019:  
• Minor amendment to penultimate paragraph so as to also allow developer provided evidence to be 

reused by the lab (subject to lab checks on the developer test that would be appropriate for VER 

evidence, as per PPFGE).  



Page 17 of 29  

  

  

VER.M946: Clock synchronisation (CHANGE) 

VER.M946: Clock synchronisation (CHANGE)  

Change summary:  
1. Increase scope to also cover Set Clock and not just the automated 24-hour clock synchronisation.  

2. Adjust wording to be compliant with multiple versions of GBCS.  

Rationale for changes:  
1. All circumstances resulting in clock synchronisation should be verified by the lab, thus now 

also including the Set Clock command (which it should be noted, is also a critical command).  

2. Self-explanatory (see also rationale for proposed change to DEV.M946)  

Specific changes:  

SC wording changes: (modified wording change-marked)  

VER.M946: Clock synchronisation  
This mitigation is required to counter tampering with the device clock  
This mitigation is required to counter vulnerabilities associated with significant clock inaccuracy  

At Foundation Grade the evaluator will verify correct device behaviour in response 

to both a Set Clock command and the recurring 24-hour clock synchronisation 

event.  
The evaluator shall confirm, possibly with the assistance of testing performed by the developer, that 
the device’s clock synchronisation functionality complies with section 9 of the version of [d] that the 
device has been designed to comply with. More specifically, this confirmation will focus on checking 
that:  
  

- the meter’s time gets set to the value expected according to each of the different scenarios in [d, 9].  

- the meter’s time remains unchanged in all other scenarios in [d, 9].  

- the meter’s time status gets set to the value expected in all scenarios in [d, 9].  

- any responses or alerts are constructed appropriately (containing the expected resultant time and 
time status where required) and sent to the appropriate destinations as required by the different 
scenarios in [d, 9].  
- any Security Log entries are written as required by the different [d, 9] scenarios.  

  

Additionally, the evaluator shall confirm that if the product fails to receive a response from the Comms 
Hub with a valid time value, or any response at all, during a recurring 24-hour clock synchronisation 
event, the meter will attempt to perform the clock synchronisation again, 30 minutes later.  

At Foundation Grade the evaluator will verify that, if any other mechanisms exist to 

update the device time and time status, that these operate as specified and are 

protected from unauthorised use.    

  

Update 25/02/2019  
• Reworded in light of material differences noted between the different GBCS versions – essentially 

reworded to say test the different [d, 9] scenarios, checking that time and time status get changed / 

left alone as appropriate and the correct responses, alerts and security log entries happen when they 

should (relaying the correct information about time and time status, where required).  

• Also added new wording to test any additional, non-GBCS, mechanisms to change the time.  

Update 28/02/2019  
• Some of the wording questioned as it appeared to be performing tests using a Comms Hub. Followup: 

Now clarified that the evaluators are to look at the meter’s behaviour if it fails to receive a (valid) 

response from the CH.  

  



Page 18 of 29  

  

  

VER.1.M347: Verify update mechanism (CHANGE) 

VER.1.M347: Verify update mechanism (CHANGE)  

Change summary:  
Increased clarity of SC wording and increased emphasis on checking authentic firmware updates work when 

required to.  

Rationale for changes:  
Being able to successfully perform a firmware update is an important security control and an essential one for 

CPA-certified smart meters (e.g. enabling suppliers to tackle security and other weaknesses that may arise in a 

product over its envisaged ~15+ year operational lifetime).  

Specific changes:  
SC wording change: (modified wording change-marked, with further revisions yellow-highlighted)  



Page 19 of 29  

  

VER.1.M347: Verify update mechanism  
This mitigation is required to counter causing unauthorised activation of authentic firmware  
This mitigation is required to counter unauthorised modification to firmware in situ This 

mitigation is required to counter inability to load firmware updates required to patch 
security weaknesses  

At Foundation Grade the evaluator will validate the developer's assertions 

regarding the suitability and security of their update process.  
The evaluator shall confirm the following validation shall include the following checks:  
  

- once a complete firmware update image has been received, its cryptographic protection 
will be validated and, if any checks fail, this will result in the image being rejected such that 
it cannot subsequently be activated (note: the checks will involve validation of the image’s 
protective signature as per requirements in [d], along with any additional cryptographic 
checks performed on the image),  
  

- a successfully received firmware update image, cryptographically validated as per the 
previous point, will not be activated if any of the cryptographic validations required by [d] on 

the associated Activate Firmware command fail – this for both immediate and future dated 
firmware activation scenarios,  
  

- similarly, a successfully received and cryptographically validated firmware update image 
will not be activated if the ‘manufacturerImageHash’ field in the Activate Firmware command 
does not match the hash in the firmware update image - this again for both immediate and 

future dated firmware activation scenarios,  
  

- attempting to action an Activate Firmware command (either when the command has 
been received with no ‘executionDateTime’ specified or when it is time for a previously-
received, future-dated command to be executed) will fail when there is no successfully 
received complete firmware update image – or one has been received but one or more 
cryptographic checks on that image have failed – and  
  

- where a partially received firmware image – or a full image over which cryptographic 
checks have not been successfully performed – has been stored, this will not get activated if 
a device reboot occurs.  

  

In addition to the above checks (that focus on ensuring a firmware update does not occur 
when not appropriate), the evaluator shall also confirm:  
  

- the design for receiving and activating a firmware update, via authentic Distribute 
Firmware and Activate Firmware commands, is clearly documented and tested against by the 

developer, confirming that there are no obvious areas of uncertainty that could result in an 
unexpected failure to update the firmware,  
  

- the activation of new firmware will thus perform reliably in an operational device (and will 

not for instance be impacted by heavy ZigBee traffic during the window in which the new   

firmware is being activated), and   

  

 

  



Page 20 of 29  

  

VER.1.M347: Verify update mechanism (CHANGE) - continued 

- where a product does not incorporate anti-replay protection on the Activate Firmware 
message, product security is not undermined by a subsequent replaying of a valid 

Activate Firmware message (when used for either immediate or future-dated firmware 
activation).  

  

- the security of the download process to ensure authenticity and integrity of the update - 

atomicity of attempted updates: the update shall either completely succeed or completely 

fail  
- the security of the activation process (including a check that the firmware version in the 

activation request corresponds to a version previously received and whose integrity and 

authenticity has been checked)  
- confirmation that the secure process applies to all firmware that can be updated.  

Update 25/02/2019:  
• Reworded to make evaluator assurance activities clearer: two sections, one to check firmware 

updates are rejected where required and the other to increase confidence that they will happen when 

required.  

• Also added additional check to cover instances in which product does not incorporate replay 

protection on the Activate Firmware command, which GBCS does not mandate.  

Update 16/04/2019:  
• Correction of typos.  

• Removed note about testing of firmware update in a backdrop of heavy ZigBee traffic as it is unclear 

whether the benefits are proportionate to the increased developer + lab effort involved.  

• Extending the coverage of the assurance activities around FW activation design and testing to the FW 

update process more generally.  

   



Page 21 of 29  

  

VER.2.M80: Protocol robustness testing (CHANGE) 

VER.2.M80: Protocol robustness testing (CHANGE)  

Change summary:  
Increased clarity of SC wording based on observations made during evaluations. 

Rationale for changes:  

A lot of discussion about fuzz testing requirements for ESMEs and GSMEs has taken place between the CPA 

Authority, labs and vendors.  

The main thrust of this has been to explore how much of the message structures relating to the different 

interfaces need to be fuzz tested, hence the motivation to improve clarity here.  

NOTE:  
For ZigBee fuzz testing, there is a consideration that other non-CPA-certified devices on the HAN could be 
exploited to send crafted input over the pairwise-encrypted channel to attempt to subvert a meter. This 
implies that extending fuzz testing into this channel is desirable. The risks associated with such a threat vector 
are unclear, hence this note, but are considered significant enough to merit inclusion in this SC requirement.  

Specific changes:  
SC wording change: (modified wording change-marked + text to discuss is yellow-highlighted)  

VER.2.M80: Protocol robustness testing  
This mitigation is required to counter exploitation of a non-operational interface through 
crafted input  
This mitigation is required to counter exploitation of an operational interface through crafted 
input  

At Foundation Grade the evaluator will perform fuzz testing of the available 

interfaces.  
As per guidance in the Process for Performing Foundation Grade CPA Evaluations [a], 
structured fuzz testing is expected for all available interfaces, physical AND logical. Based on 
mandatory functional requirements in [d], the following two interfaces will require fuzz 
testing: ZigBee and GBCS application layer messages.  
  

For ZigBee, fuzz testing shall be performed on all the messages that can be received 
including those that are (a) unencrypted, (b) encrypted with the network key (and thus 
visible to all devices on the HAN) and (c) encrypted with an APS key set up to protect comms 

between the product and each other type of HAN device that is not required to be CPA-
certified (at time of writing, PPMID, IHD and CAD).  
  

When fuzz testing GBCS Application layer messages (‘use cases’), mutations are expected to 
cover all parts of a message that the product will attempt to decode up to the point of 
authentication. The point of authentication for these messages (as relevant to [a], for smart 

metering equipment) is the point at which the protective crypt gets successfully validated 
(one or both of digital signature and MAC, dependent on the message type); any message 
decoding performed before this point (even just to check message well-formedness) will be 

in scope of GBCS Application layer fuzz testing.  
  

With this in mind, some message payload fuzz testing is expected (in addition to all the other 
sections of a GBCS Application layer message that can be present (i.e. GBT header, grouping 
header, signature field, etc), the amount of payload fuzz testing depending on how much of 
the message’s payload gets decoded by the product before the point of authentication is 
reached. This minimum expectation is based on some GBCS application messages requiring 
content in the payload to be decoded and processed as part of the cryptographic validation 
process for the message type.  
  

In addition to the ZigBee and GBCS application layer interfaces, it is possible that the device 
may have additional interfaces beyond those defined in [d] that might be accessible to an 

attacker and hence also require fuzz testing.  
  



Page 22 of 29  

  

VER.2.M80: Protocol robustness testing (CHANGE) - continued 

Fuzz testing is described in more detail in the Process for Performing Foundation Grade 
Evaluations [a]. Interfaces that are disabled and that cannot be directly accessed without 
physical modification involving breach of the tamper-protection boundary are not included in 
the scope of fuzz testing.  

If the device includes separate components each with their own tamper-protection boundary, 
and with inter-component interfaces between the components (which can therefore be 

accessed without breaching the tamper-protection boundary) then these intercomponent 
interfaces shall be included in the scope of fuzz testing.  

Update 25/02/2019:  
• Amended suggested wording to specify that fuzz testing needs to also be performed within the 

pairwise ZigBee link, as per the updated Discussion Note details.  

• Intention to generate a separate lab guidance paper on to provide more in-depth guidance on fuzz 

testing expectations. The overarching aim of this document would be to help reduce the time and 

effort required to perform the fuzz testing, this through providing checks that a lab can perform to 

determine the amount of attack surface presented in incoming messages (i.e. up to the “point of 

authentication”), so that the whole complexity of different types of messages does not need to be 

fuzzed.  

   



Page 23 of 29  

  

VER.4.M4: Evaluation/Cryptocheck (CHANGE)  

VER.4.M4: Evaluation/Cryptocheck (CHANGE)  

Change summary:  
Minor tweak in line with CPA evaluation policy.  

Rationale for changes:  
DRBG is the more typical crypt primitive associated with PRNGs.  

Specific changes:  
SC wording change: (modified wording change-marked)  

VER.4.M4: Evaluation/Cryptocheck  
This mitigation is required to counter exploitation of a cryptographic algorithm implementation 
error  

At Foundation Grade the evaluator will ensure all cryptographic algorithms 

employed for security functionality have been validated as per the "Cryptography 

Review" section in the CPA Foundation Process document.  
The evaluator shall include in this activity a confirmation (by reference to relevant CAVP or 
equivalent certificates, or by activities in the course of the CPA evaluation) that component 
cryptographic algorithms used by primitives of the PRNG (such as DRBG SHA) have been 
independently validated for correctness.  
  

Where cryptographic algorithms claim certification under CAVP (or equivalent external 
certification), then the evaluator shall confirm that this certification has been achieved for 
the relevant hardware/firmware/software components of the product, at the relevant version 

for the component. For cryptographic algorithms that are not certified using an external 
process, the evaluator shall confirm the correctness of the implementation by means of 
known answer tests, as described in the CPA Foundation Process document, Reference [a].  
  

The cryptographic primitives used by the device shall be only those specified in [d], 

including those primitives used by all UTRN validation functionality in the device.  

  

Update 25/02/2019:  
• Typo – now using correct terminology w.r.t. DRBG and CAVP.  

• Added wording to make it clearer that this requirement also covers UTRN functionality (this 

considering removal of VER.7.M4 but not removal of the DEV.7 + VER.7 “UTRN” logical component).  

  

  



Page 24 of 29  

  

VER.4.M855: Receiver replay check (CHANGE)  

VER.4.M855: Receiver replay check (CHANGE)  

Change summary:  
Clarification that evidence is required for all command types requiring replay protection and inclusion of the 

anti-replay protection requirements for UTRNs.  

Rationale for changes:  
Clarification about the coverage of evidence and cover a potentially big gap in the testing of UTRN protections.  

Specific changes:  
SC wording change: (modified wording change-marked)  

VER.4.M855: Receiver replay check  
This mitigation is required to counter interception and replay of messages  

At Foundation Grade the evaluator will verify that messages are not actioned more 

than once.  
The evaluator shall confirm by testing that the device correctly rejects messages with 
unacceptable count values relative to its current state, and that the device correctly 
generates count values for which it is responsible. The testing shall cover both commands 
for immediate execution and future-dated commands (where if applicable).   
  

The mechanism for protection against replay is defined in [d, 4.3]. Only certain messages 
require the protection, as specified in the Use Cases in [d, 19], summarised in [d, Table 20]. 
However, a different anti-replay mechanism is used for Security Credential commands as 
defined in [d, 13], and for Pre-Payment Top-Ups as defined in [d, 14].  
  

Notes:  
- Evidence is required for ALL commands that incorporate replay protection.  
- When testing the anti-replay protection for Pre-Payment Top-Ups, the evaluator shall 

verify that Pre-Payment Top-Up messages are rejected if its UTRN counter value (a) 

matches any value in the meter’s UTRN counter cache or (b) is lower than the lowest value 

in the meter’s UTRN counter cache. These tests will also cover all the interfaces over which 

the meter can receive a UTRN.  

  

Update 25/02/2019: (no changes to suggested new wording)  
• Query about whether a sampled approach is acceptable: No, *all* commands incorporating antireplay 

protection for the device need to be checked. This because the associated commands can have 

significant security impact if they are maliciously replayed.  

• No change to proposal made, as it does highlight that evidence is needed for “ALL” commands that 

require replay protection.  

  

  



Page 25 of 29  

  

VER.4.M939: Enable update of security credentials (CHANGE)  

VER.4.M939: Enable update of security credentials (CHANGE)  

Change summary:  
Increase coverage of assurance activities to confirm that the product correctly implements updating of 

security credentials.  

Rationale for changes:  
Update Security Credentials functionality should be viewed as an important security enforcing function. If 

nothing else, it would need to be relied on if KRP key compromise occurs and it is also worth noting the 

reputational importance of this functionality correctly supporting GBCS Change of Supplier requirements. It 

is envisaged that manufacturers are already testing this functionality extensively, given its importance, so it 

is hoped that this will lead to minimal impact on overall evaluation effort.  

Specific changes:  
SC wording change: (modified wording change-marked, with further revisions yellow-highlighted)  

VER.4.M939: Enable update of security credentials  
This mitigation is required to counter exploiting incomplete update of security credentials   
This mitigation is required to counter use of compromised security credentials  
This mitigation is required to counter exploitation of a software implementation/logic error  
This mitigation is required to counter installation of an invalid certificate  

At Foundation Grade the evaluator will verify that the update of a security 

credential is atomic.  
The evaluator will test that the update of each security credential either finishes successfully 
with complete replacement of all parts of the relevant credential or else retains the old 
credential.   

At Foundation Grade the evaluator will verify that, in addition to the general critical 

message validation checks described in VER.4.M927, certificate path validation 

(CPV) always successfully completes, where required to do so by [d], before the 

validated replacement remote party certificate is installed.  
The specific type of CPV required by [GBCS] will vary according to the type of certificate and the 
operation of each type of CPV will be verified by the evaluator.  
  

At Foundation Grade the evaluator will verify that, once validation checks have 

been successfully performed, the specified security credentials replacement will 

take place with subsequent product functionality confirming this.  
The evaluator shall seek evidence to confirm that all the different types of remote party security 
credentials defined in [d, 4] (i.e. covering the different types of remote party role, keyUsage and 
cellUsage, appropriate for the product type) can be replaced, using all the different credentials 
replacement modes defined in [d], this by using each of the different credentials replacement modes 
defined in [GBCS] (for the different and covering the different types of types of credentials (i.e. varying 
according to  s in terms of remote party, keyUsage and cellUsage)types of certificate that key usage 
types and) supported that are relevant for the product according to [d, 4] by the product.  
  

Checks on subsequent product functionality should, as a minimum, confirm that the new credentials 

will be used for the associated cryptographic mechanisms, instead of the old ones. For instance, 

depending on the type of credential replaced, the following tests are suggested: (a) digital signature 

verification, (b) MAC authentication + generation, (c) certificate path validation and (d) encryption + 

decryption of sensitive data.  

   
  



Page 26 of 29  

  

VER.4.M939: Enable update of security credentials (CHANGE)  

Update 25/02/2019:  

• Tweaked wording as CPV is not required for all variants of CS02b (i.e. some instances of CS02b 

anyByContingency do not require this.)  

• For clarity: 

 o  the last paragraph is intended to perform tests that demonstrates the security cred updates have 

worked by using the new creds to validate crypt on new incoming messages.  

o  It might be possible for labs to reuse evidence from GBCS interop testing to help confirm this last 

point.   

• Removed the following wording (which had previously been the last paragraph), which is already 

considered to be covered by:  

“The evaluator shall also verify that remote party credentials can only be updated using the [GBCS] 
defined modes supported by the product and not by any other replacement mode or mechanism.”  

• Query received that such testing may be covered in GBCS Interop testing –if this is the case and the 

nature of the testing + results can be shared with the evaluators and the evaluators can be satisfied 

that the evidence demonstrates conformance with this SC requirement, additional lab testing may not 

be needed.  

Update 16/04/2019:  
• Minor rewording to make it clearer that the testing needs to cover replacement of all the different 

certificates that GBCS requires to be present in the device.  

   



Page 27 of 29  

  

VER.6.M917: Verify logical protection of keys (CHANGE)  

VER.6.M917: Verify logical protection of keys (CHANGE)  

Change summary:  
Improve clarity of wording in terms of which security data is in scope of this SC requirement and what checks 

need to be performed as a minimum.  

Rationale for changes:  
As stated in the summary. No material impact on evaluations as this is a clarification and reflective of what has 

been encountered in evaluations to date.  

Specific changes:  
SC wording change: (modified wording change-marked)  

VER.6.M917: Verify logical protection of security data keys  
This mitigation is required to counter gaining access to security data in a single device via 

operational interfaces  
This mitigation is required to counter gaining access to security data in a single device via 
nonoperational interfaces  

At Foundation Grade the evaluator will confirm the protection of access to security 

data, such as cryptographic key material.  
The evaluator shall confirm that:  
a) no sensitive key material (private asymmetric keys and any symmetric keys) can be 
exfiltrated from the product, and  
b) the following security related data cannot be modified, except as a result of certain 
authentic messages defined in [d] intended for the purpose: device security credentials, 
remote party security credentials, including anti-replay counters and the meter’s UTRN 
counter cache.  
  

Note: This confirmation shall also take into account any documented product interfaces 
additional to [d] that have the potential to exfiltrate sensitive key material or modify 
security related data.  
  

The evaluator shall confirm by testing that security credentials and other cryptographic keys 

to which the tester does not have authorised access cannot be accessed for read or for 

modification. The testing should include a search of interface documentation for methods 

other than normal operational messages.  

  

Update 25/02/2019:  
• Reworded to avoid potential confusion about DEV vs VER activities and to scope the impact that any 

potential non-GBCS interface might have on testing.  

• Suggestion that more guidance could be provided about different types of internal interface. Not 

really possible to do this at this time as it would be going into very product specific detail (SC wording 

needs to be product agnostic). However: Intention for this to be borne in mind for future SC updates 

and/or associated guidance papers.  

  

  



Page 28 of 29  

  

VER.7.Mnnn: Confirm correct UTRN processing (**NEW**)  

VER.7.Mnnn: Confirm correct UTRN processing (**NEW**)  

** New requirement** summary:  
Introduction of a new SC requirement to facilitate lab verification that the protections against non-authentic 

UTRNs are effective, whilst authentic UTRNs get correctly processed, when required.  

Note: Introduction of this SC requirement would help facilitate the removal of the SC Requirement VER.4.M4 

(covered elsewhere in this document).  

Rationale for new requirement:  
Testing of UTRNs is currently limited to DEVs, yet the associated functionality is clearly critical, both in terms of 

supply impact (e.g. supply lost if authentic UTRN incorrectly rejected) and fraud (e.g. non-authentic/repeated 

UTRN incorrectly accepted). Impact on evaluations should be limited if manufacturers are performing testing 

in this area already.  

**New** requirement wording:  
New SC wording:  

VER.7.M???: Confirm correct UTRN processing  
This mitigation is required to counter exploitation of a UTRN validation vulnerability for 
fraudulent purposes  
This mitigation is required to counter loss of supply due to non-acceptance or incorrect 
processing of a valid UTRN  

At Foundation Grade the evaluator will seek evidence of developer testing that 

demonstrates the product will always reject a non-authentic UTRN value, received 

via the user interface and PPMID.  
This is intended to supplement other testing requirements elsewhere in the Security  
Characteristic and confirm that the code handling incoming UTRNs is sufficiently robust that, 

if any exceptional circumstances are encountered during processing, the default behaviour 
will be to reject the UTRN (i.e. fail-safe).  

At Foundation Grade the evaluator will confirm that the product correctly processes 

valid UTRN values, received via the user interface and PPMID.  
The evaluator will confirm that a sample of valid UTRNs are accepted via both user interface 

and PPMID and, in each instance, will result in (a) the meter’s balance being adjusted by the 

amount specified in the given UTRN and (b) an appropriate response message being sent to 

the Supplier to reflect the adjustment. Note: There is an expectation that evaluator may be 

able to reuse testing that developers are performing in this area as evidence for this 

requirement.  

  

Update 25/02/2019:  

• Introduction of this new VER requirement has been queried for the following reasons: 

 o  This is about fraud that can be detected by other means (e.g. reconciliation of credit purchases)  

o It should be covered by other testing within the wider smart metering programme  

o Introduces new tests to what is often a slow process.  

• Points are noted and carefully considered but counter arguments are as follows:  

o Reconciling UTRN attempts is second line and checks on first line protections should be performed.  

o Current checking of these first line protections is limited to DEVs only, meaning in theory that a 

developer only needs to assert that they perform the required checks.  

o 'DEV's usually have at least one associated VER, but this is not the case for UTRNs.  

o A main aim of the SCs is to mitigate potential CNI risks but reputational risks (such as fraud), are also 

protected against. Also “commit fraud” is captured as a high-level attacker objective in the SC Maps 

from which the SC requirements are derived).  

o the developer should already be performing the sort of testing suggested here, which could then 

potentially be reused by the lab. 



Page 29 of 29  

  

 

VER.7.M4: Evaluation/Cryptocheck (**DELETE**)  

VER.7.M4: Evaluation/Cryptocheck (**DELETE**)  

** deleted requirement** rationale:  
This requirement has not really provided any meaningful value in evaluations, as all cryptographic compliance 

evidence has nearly always been covered by VER.4.M4, titled the same and targeted at message protection 

more generally (whereas VER.7.M4 focusses more specifically on protective crypt for UTRN messages).  

 

 

DEP.5.M934: Unique security data per device (CHANGE)  

DEP.5.M934: Unique security data per device (CHANGE)  

Change summary:  
Relocate this DEP requirement to DEV. 

Rationale for changes:  

Based on some evaluations, it has become apparent that this requirement – that two or more instances of a 

device must not share the same key data – is better expressed as a DEV requirement, rather than a DEP.  

Specific changes:  
SC wording change: (modified wording change-marked)  

DEVDEP.65.M934: Unique security data per device  
This mitigation is required to counter gaining access to security data in a single device  

At Foundation Grade the product deployment is required to contain no security 

data that enables compromise of a different device.  
Devices shall not contain data which if compromised would directly enable an attacker to 

compromise another core device one or more other devices deployed in different premises 

(such as shared keys that would enable the attacker to masquerade as a different device, or 

a different core device). This requirement applies to all life-cycle stages of the product, 

following manufacture, and applies to all the interfaces, including any additional to those 

defined in [d], both external to and within the product’s tamper boundary.  

  

Update 25/02/2019:  
• Clarified that this requirement applies to all stages of life-cycle post-manufacture and to any 

interfaces that an attacker could get at – both external to and within the tamper boundary.  

• For info: This is looking to avoid things like the same symmetric key or asymmetric private key being 

used in multiple devices to protect device security; It would not apply to asymmetric KRP public keys.  

  

Update 14/06/2019:  
• Clarified that the overarching intent of the requirement is to avoid compromise of sensitive/private 

data in one instance of the product type from weakening security on other deployed instances of the 

product (updated wording is yellow highlighted).  

  


